

г. Барнаул, ул. Г. Титова, 9 т. (3852)22-98-68 ф. (3852) 33-35-06 e-mail: sales@roskip.ru

TPM974

Блок управления холодильными машинами

паспорт и руководство по эксплуатации

СОДЕРЖАНИЕ

1. Назначение изделия	. 2
2. Технические характеристики и условия эксплуатации	. 3
3. Устройство и принцип действия прибора	. 5
4. Меры безопасности	. 8
5. Подготовка к работе	. 9
6. Эксплуатация	. 12
7. Программирование	. 16
8. Техническое обслуживание	. 18
9. Маркировка и упаковка	. 18
10. Транспортирование и хранение	. 19
11. Комплектность	. 19
12. Гарантии изготовителя	. 20
Приложение А. Габаритный чертеж	. 2
Приложение Б. Схемы подключения	. 23
Приложение В. Программируемые параметры	. 25
Лист регистрации изменений	
Свидетельство о приемке и продаже	

1. НАЗНАЧЕНИЕ ИЗДЕЛИЯ

Блок управления TPM974, далее "прибор" предназначен для контроля и регулирования температур в средне- и низкотемпературных холодильных установках с автоматической разморозкой.

Прибор измеряет температуру при помощи двух РТС-датчиков (*Positive Temperature Coefficient*). Для поддержания температуры TPM974 управляет работой компрессора, вентилятором и нагревателем.

Прибор выпускается по ТУ 3434-020-46526536-99 и имеет сертификат соответствия №03.009.0108.

Приборы ТРМ974 выпускаются в корпусах двух типов:

Тип корпуса:

— щитовой Щ3, 74×32×70 мм, степень защиты IP54 со стороны передней панели;

Д – DIN-реечный 72×88×54 мм, степень защиты IP20.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И УСЛОВИЯ ЭКСПЛУАТАЦИИ

2.1. Основные технические характеристики и условия эксплуатации приведены в таблице 1.

Таблица 1

Характеристика	Значение		
Разрешающая способность измерения температуры	1 '	°C	
Диапазон поддержания температуры	-50	+50 °C	
Время измерения температуры	не бол	iee 1 c	
Тип корпуса	Щ3	Д	
Напряжение питания	12В постоянного или переменного тока	220 В 50 Гц	
Максимальный/номинальный ток управления при 220 В переменного напряжения и соs \$\phi > 0,4:			
- компрессором;	3A/1A	10A/3A	
– вентилятором;	3A/1A	<i>3A</i> /1A	
– нагревателем;	3A/1A	<i>3A</i> /1A	
Габаритные размеры	74×32×70	72×88×54	
Степень защиты корпуса	IP54*	IP20	
*со стороны передней панели			

2.2. Прибор имеет группу климатического исполнения УХЛ4 по ГОСТ 15150-69 и предназначен для эксплуатации в следующих условиях окружающей среды:

допустимая температура окружающей среды
атмосферное давление
относительная влажность воздуха
+5 °C...+50 °C;
86...107 кПА;
30...80 %.

2.3. Технические характеристики РТС-датчиков приведены в табл. 2.

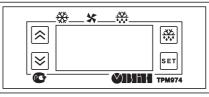
Таблица 2

Наименование	Значение
Чувствительный элемент	полупроводниковый РТС-сенсор
Тип кабеля	силиконовый с макс. устойчивостью к повышенной влажности и пониженной температуре
Кожух	влагозащитное исполнение со степенью защиты IP54, нержавеющая сталь типа 12X18H10T

3. УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ПРИБОРА

3.1. Устройство

- 3.1.1. Приборы выпускаются в корпусах щитового крепления типа Щ3, а также в корпусе Д для крепления на DIN-рейку, см. прил. А.
- 3.1.2. Элементы индикации и управления приведены на рис.1:
 - для TPM974-Щ на рис. 1, *a*;
 - для ТРМ974-Д на рис. 1, б.


Точки на цифровом индикаторе используются как светодиоды состояния:

 постоянной засветкой сигнализирует о включении компрессора, мигающей – о включении задержки запуска компрессора;

постоянной засветкой сигнализирует о включении вентилятора, мигающей – о задержке включения вентиляторов после оттайки;

a)

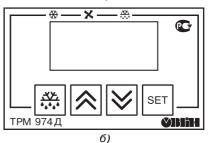


Рис. 1

постоянной засветкой сигнализирует о включении оттайки,
мигающей – о включении слива конденсата.

Нажатие и удержание кнопки 🛞 в течение 6 с в режиме TEPMOCTAT включает оттайку. На время нажатия на индикатор выводится время, оставшееся до окончания текущего режима работы.

Кнопка [st] врежиме TEPMOCTAT: кратковременное нажатие – редактирование значения **SP** (*5P*), длительное нажатие (>5c) – вход в режим ПРОГРАММИРОВАНИЕ, в котором используется для вывода значения выбранного параметра или для записи измененного значения в память.

Кнопка <a>
в режиме ПРОГРАММИРОВАНИЕ предназначена для выбора программируемого параметра или увеличения его значения.

3-х разрядный цифровой индикатор в режиме TEPMOCTAT используется для вывода измеренного значения температуры и диагностических сообщений. В режиме ПРОГРАММИРОВАНИЕ показывает программируемый параметр или его значение.

3.2. Функциональная схема прибора

- 3.2.1. Функциональная схема прибора приведена на рис. 2.
- 3.2.2. Ковходам TPM974 подключаются два Positive Temperature Coefficient (PTC) датчика для измерения температуры в камере и воздухоохладителя.

В качестве датчиков используются полупроводниковые терморезисторы с положительным температурным коэффициентом (около 0,77 %/°C) и номинальным сопротивлением 1000 Ом при $t=25\,^{\circ}$ С.

Датчик подсоединяется по двухпроводной линии длиной не более 1,0 м. При увеличении длины соединения необходимо использовать провод с сечением не менее сечения кабеля датчика PTC.

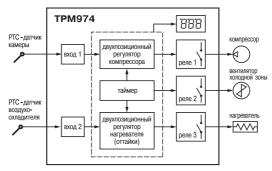


Рис. 2

Работы по подключению и отсоединению датчиков производить только при отключенном питании прибора.

Чувствительный элемент датчика находится внутри защитной металлической гильзы, герметично соединенной с силиконовой оболочкой соединительного кабеля.

3.2.3. Каждое выходное реле имеет одну пару нормально разомкнутых контактов. Компрессоры, являющиеся индуктивной нагрузкой, можно подключать к прибору непосредственно, если их мощность не превышает 200 Вт. При применении в холодильной машине компрессоров большей мощности необходимо использовать дополнительные устройства коммутации, например, магнитные пускатели или симисторы.

Устройства сигнализации имеют, как правило, активный характер нагрузки и поэтому максимально допустимая коммутируемая мощность может достигать 0,5 кВт. Они могут быть подключены непосредственно через контакты реле.

4. МЕРЫ БЕЗОПАСНОСТИ

- 4.1. Прибор ТРМ974 относится к классу защиты 0 по ГОСТ 12.2.007.0-75.
- 4.2. При эксплуатации и техническом обслуживании необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей», «Правил охраны труда при эксплуатации электроустановок потребителей».
- 4.3. Любые подключения к ТМ974 и работы по его техническому обслуживанию следует производить только при отключенном питании прибора и исполнительных устройств.
- 4.4. К работе с прибором должны допускаться лица, изучившие настоящий паспорт и руководство по эксплуатации.

5. ПОДГОТОВКА К РАБОТЕ

5.1. Монтаж прибора на объекте

5.1.1. Монтаж прибора в щитовом корпусе

Подготовить на щите управления место для установки прибора в соответствии с *прил. А*.

Вставить прибор в отверстие лицевой панели щита, рис. 3, а.

Вставить фиксаторы из комплекта поставки в отверстия на боковых стенках прибора, рис. 3, δ .

С усилием завернуть винты M4×35 в отверстиях каждого фиксатора так, чтобы прибор был плотно прижат к лицевой панели щита.

5.1.2. Монтаж прибора в DIN-реечном корпусе осуществляется на стандартную DIN-рейку.

5.2. Монтаж внешних связей

- 5.2.1. Подготовить кабели для соединения прибора с датчиками, исполнительными механизмами и внешними устройствами, а также с источником питания. Для обеспечения надежности электрических соединений рекомендуется использовать кабели с медными многопроволочными жилами. Сечение жил кабеля не должно превышать 1 мм².
 - 5.2.2. На работу прибора могут влиять следующие внешние помехи:
 - помехи, возникающие под действием электромагнитных полей (электромагнитные помехи);
 - помехи, возникающие в питающей сети.
- 5.2.3. Для уменьшения влияния *электромагнитных помех* необходимо выполнять приведенные ниже рекомендации.
- 5.2.3.1. При прокладке сигнальных линий, в том числе линий "прибор датчик", их длину следует по возможности уменьшать и выделять их в самостоятельную трассу (или несколько трасс), отделенную(ых) от силовых кабелей.
- 5.2.3.2. Обеспечить надежное экранирование сигнальных линий. Экраны следует электрически изолировать от внешнего оборудования на протяжении всей трассы и подсоединять к клемме прибора "Общая" (⊥). При отсутствии возможности изоляции по всей трассе или клеммы "Общая" экран подсоединяют к общей точке заземления системы, например, к заземленному контакту щита управления.
- 5.2.3.3. Прибор следует устанавливать в металлическом шкафу, внутри которого не должно быть установлено никакого силового оборудования. Корпус шкафа должен быть заземлен.
- 5.2.4. Для уменьшения **помех, возникающих в питающей сети**, следует выполнять следующие рекомендации.

- 5.2.4.1. Подключать прибор к питающей сети отдельно от силового оборудования.
- 5.2.4.2. При монтаже системы, в которой работает прибор, следует учитывать правила организации эффективного заземления:
 - все заземляющие линии прокладывать по схеме "звезда", при этом необходимо обеспечить хороший контакт с заземляемым элементом;
 - все заземляющие цепи должны быть выполнены как можно более толстыми проводами;
 - запрещается объединять клемму прибора с маркировкой "Общая" с заземляющими линиями.
 - 5.2.4.3. Устанавливать фильтры сетевых помех в линиях питания прибора.
- 5.2.4.4. Устанавливать искрогасящие фильтры в линиях коммутации силового оборудования.

5.3. Подключение прибора

Подключение прибора следует выполнять по схеме, приведенной в *прил. Б*, соблюдая при этом нижеизложенную последовательность действий:

- а) произвести подключение прибора к исполнительным механизмам и внешним устройствам, а также к обесточенному источнику питания;
 - б) подключить линии связи «прибор датчик» к первичному преобразователю;
 - в) подключить линии связи «прибор датчик» ко входу ТРМ974.

ВНИМАНИЕ! Для защиты входных цепей TPM974 от возможного пробоя зарядами статического электричества, накопленного на линиях связи «прибор – датчик», перед подключением к клеммнику прибора их жилы следует на 1...2 с соединить с винтом заземленного щита.

6. ЭКСПЛУАТАЦИЯ

ТРМ974 может поддерживать следующие рабочие режимы: термостата, набора холода и тревоги.

6.1. Режим ТЕРМОСТАТА

Температурный режим в камере определяют параметры:

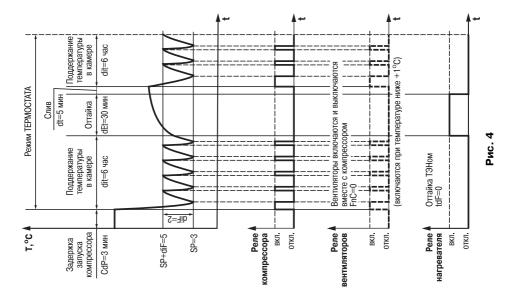
SP (5P) – Set Point, или контрольная точка и diF ($d\overline{L}F$) – дифференциал.

Для поддержания температуры в камере TPM974 управляет работой компрессора и вентилятора (рис. 4).

Компрессор запускается, когда температура в камере превышает значение SP+diF, и отключается, когда температура вновь снижается до значения контрольной точки.

Вентилятор может по выбору пользователя включаться и выключаться вместе с компрессором или работать непрерывно. Можно также задать значение температуры камеры, выше которой вентилятор автоматически отключается.

6.1.1. Оттайка холодильной камеры


ТРМ974 периодически производит оттайку холодильной камеры. При необходимости оттайку можно запустить вручную, нажав кнопку (※) на лицевой панели прибора.

Интервал между двумя оттайками можно отсчитывать:

- по времени (1...99 ч);
- по времени наработки компрессора (режим Digifrost).

Оттайку можно производить двумя способами:

- ТЭНом (компрессор выключен);
- горячим газом (одновременно включены компрессор и ТЭН).

Оттайка заканчивается:

- по истечении заданного времени:
- по достижении заданной температуры воздухоохладителя;
- при выполнении хотя бы одного из двух вышеназванных условий.

В ТРМ974 можно задать время для слива конденсата по окончании оттайки. Кроме того, можно установить время задержки включения вентиля-торов после оттайки (при этом компрес-сор и ТЭН также выключены).

6.2. Режим НАБОР ХОЛОДА

Режим НАБОР ХОЛОДА предназначен для быстрого охлаждения камеры. заполненной новым (теплым) продуктом (рис. 5).

Пользователь задает время набора холода 1...24 ч. в течение которого компрессор принудительно включен. Можно задать также задержку оттайки после набора

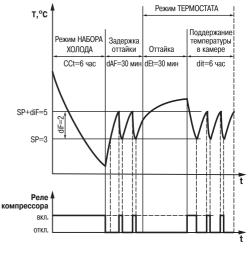


Рис. 5

холода. По окончании оттайки прибор автоматически переходит в режим ТЕРМОСТАТ.

6.3. Режим ТРЕВОГА

Режим ТРЕВОГА включается:

- при выходе температуры в камере за заданные границы;
- при выходе из строя любого из датчиков.

На цифровом индикаторе в режиме тревога появляются соответствующие аварийные сообщения (см. Приложение Γ).

На цифровом индикаторе в режиме тревога появляются соответствующие аварийные сообщения.

При выходе из строя датчика камеры (на цифровом индикаторе появляется предупреждающее сообщение **Er 1**) управление осуществляется в аварийном режиме: прибор управляет компрессором в режиме циклического включения (значение параметра **COn**) и выключения (значение параметра **COF**) вплоть до достижения момента включения (первой) оттайки. По истечении времени оттайки управление компрессором не возобновляется, реле управления компрессором остается в положении «выкл».

ВНИМАНИЕ! Для обеспечения штатной работы прибора TPM974 и обслуживаемого им холодильного оборудования необходимо осуществлять оперативную замену вышедшего из строя датчика камеры при возникновении на цифровом индикаторе сообщения об аварии **Er 1**.

При выходе из строя датчика воздухоохладителя прибор отключает вентилятор.

6.4. Особенности первого запуска ТРМ974

При подаче питания поведение ТРМ974 зависит от заданных пользователем установок:

- производится первая оттайка через 30 с после запуска;
- сразу после подачи питания прибор работает в режиме ТЕРМОСТАТ, время до первой оттайки равно интервалу между двумя оттайками.
- после запуска компрессор заданное время остается выключенным (во избежание пусковых перегрузок), после чего прибор переходит в режим ТЕРМОСТАТ.

7. ПРОГРАММИРОВАНИЕ

7.1. Общие сведения

- 7.1.1. В приборе предусмотрено программирование прибора на двух уровнях:
 - уровень пользователя, на котором изменяют контрольную точку (уставку);
 - уровень наладки изменение всех параметров прибора (кроме уставки), либо загрузка значений изготовителя.
- 7.1.2. Полный список параметров приведен в прил. В.
- 7.1.3. Если ни одна из кнопок не нажата в течение 20 с, прибор переключается в режим изменения параметров и далее, через 20 с в режим РАБОТА. В этом случае изменения, сделанные в параметре, из которого произошел выход, не будут внесены в энергонезависимую память прибора.

Кнопка 🗱 в режиме программирования не работает.

7.2. Уровень пользователя

Для изменения контрольной точки (уставки) кратковременно нажмите кнопку [set]. На экран будет выведено значение контрольной точки, при этом все разряды должны мигать. Используя кнопки [்], [у] установите новое значение, затем нажмите и удерживайте кнопку [set] до тех пор, пока экран не перестанет мигать. Прекращение мигания означает, что произведена запись нового значения в энергонезависимую память и прибор начал поддерживать температуру по новому значению уставки.

7.3. Режим изменения всех параметров

7.3.1. Изменение параметра

- 7.3.1.1. Нажмите и удерживайте кнопку [ѕ т] не менее 5 с. На экране появится [---].
- 7.3.1.2. Кнопками 🔊 и 🔝 установите код 007. Если код установлен правильно, то доступ к параметрам прибора происходит при нажатии на кнопку 📴. Если код введен неверно, прибор возвращается в режим термостата.
- 7.3.1.3. Нажмите кнопку [set]. Прибор переходит в режим изменения параметров, продолжая работать в текущем режиме.
- 7.3.1.4. После выбора требуемого параметра кнопками (♠), (❤) нажмите кнопку (ыт), на индикатор будет выведено значение этого параметра. Измените значение параметра кнопками (♠) и (❤). Для записи нового значения нажмите и удерживайте кнопку (ыт) до тех пор, пока не появится название записываемого параметра.
 - 7.3.1.5. Для выхода из режима программирования выбирите параметр 🕮 и нажмите 🖼 т.

7.3.2. Восстановление заводских установок параметров прибора

- 7.3.2.1. Нажмите и удерживайте кнопку [| не менее 5 с, на экране появится [---].
- 7.3.2.2. Кнопками 🔯 и 🔝 установите код 100. Если код введен правильно, то запись заводских установок параметров будет произведена при нажатии и удержании кнопки ыт течение 3-х с.
- 7.3.2.3. При отпускании кнопки set прибор начнет работать в соответствии с заводскими установками.

8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 8.1. При выполнении работ по техническому обслуживанию соблюдать меры безопасности, изложенные в разд. 4.
- 8.2. Техническое обслуживание должно выполняться не реже одного раза в 6 месяцев и включать следующие операции:
 - очистку корпуса прибора, а также его клеммников от пыли, грязи и посторонних предметов;
 - проверку качества крепления прибора на месте его установки;
 - проверку надежности подключения внешних связей к клеммникам.

9. МАРКИРОВКА И УПАКОВКА

- 9.1. При изготовлении на прибор наносятся:
 - наименование прибора;
 - наименование предприятия-изготовителя;
 - штрих-код;
 - год изготовления;
 - номинальное напряжение питания и потребляемая мощность;
 - степень защиты корпуса;
 - знак соответствия нормативно-технической документации.
- 9.2. Упаковка прибора производится в потребительскую тару, выполненную из гофрированного картона.

10. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 10.1. Прибор должен транспортироваться в упаковке при температуре от -25 °C до + 55 °C и относительной влажности воздуха не более 95 % (при 35 °C).
 - 10.2. Транспортирование допускается всеми видами закрытого транспорта.
- 10.3. Транспортирование на самолетах должно производиться в отапливаемых герметичных отсеках.
- 10.4. Прибор должен храниться в упаковке в закрытых складских помещениях при температуре от 0 °C до + 60 °C и относительной влажности воздуха не более 95 % (при 35 °C). Воздух помещения не должен содержать агрессивных к прибору паров и газов.

11. КОМПЛЕКТНОСТЬ

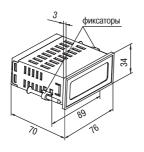
Наименование	Тип ко	рпуса
	Щ3	Д
1. Прибор ТРМ974	1 шт.	1 шт.
2. Комплект крепежных элементов	1 шт.	_
3. Трансформатор 220 В/12 В мощность 3 ВА	1 шт.	_
4. РТС-датчик, длина кабеля 1,5 м	2 шт.	2 шт.
5. Паспорт и руководство		
по эксплуатации	1 шт.	1 шт.
6. Гарантийный талон	1 шт.	1 шт.

12. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 12.1. Изготовитель гарантирует соответствие приборатребованиям ТУ при соблюдении потребителем условий транспортирования, хранения, монтажа и эксплуатации.
 - 12.2. Гарантийный срок эксплуатации 24 месяца со дня продажи.
- 12.3. В случае выхода прибора из строя в течение гарантийного срока при условии соблюдения потребителем правил транспортирования, хранения, монтажа и эксплуатации, а также при наличии заполненной Ремонтной карты предприятие-изготовитель обязуется осуществить его бесплатный ремонт.

Для отправки в ремонт необходимо:

- заполнить Ремонтную карту в Гарантийном талоне;
- вложить в коробку с прибором заполненный Гарантийный талон;
- отправить коробку по почте или привезти по адресу:


109456, г. Москва, 1-й Вешняковский пр., д. 2.

Тел.: (495) 742-48-45, e-mail: rem@owen.ru

- ВНИМАНИЕ! 1. Гарантийный талон не действителен без даты продажи и штампа продавца.
 - 2. Крепежные элементы вкладывать в коробку не нужно.

Приложение А

ГАБАРИТНЫЙ ЧЕРТЕЖ

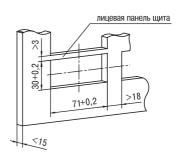


Рис. А1. Корпус Щ3

Продолжение прил. А

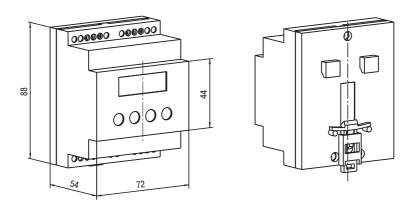


Рис. A2. Корпус Д для крепления на DIN-рейку

Приложение Б

СХЕМЫ ПОДКЛЮЧЕНИЯ

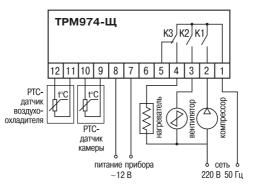


Рис. Б1. Схема подключения прибора в корпусе Щ3

Продолжение прил. Б

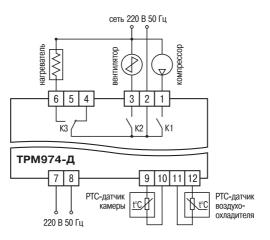


Рис. Б2. Схема подключения прибора в корпусе Д

Приложение В

ПРОГРАММИРУЕМЫЕ ПАРАМЕТРЫ

Обознач.	Название	Допустимые значения	Комментарии	
Параме	етры режима термостата			
SP (<i>5P</i>)	Контрольная точка (Set Point)	LSEHSE	[град.]	
LSE (<i>L5E</i>)	Минимум контрольной точки	-50+50	[град.]	
HSE (<i>H5E</i>)	Максимум контрольной точки	-50+50	[град.]	
diF (<i>dīF</i>)	Дифференциал	+1+50	[град.]	
dCt (ፈርቲ)	Способ отсчета времени между оттайками	0 1	По времени dit Digifrost	
dit (d[t)	Интервал между оттайками	199	[ч], для dCt=0	
CdP (<i>[:dP</i>)	Время задержки запуска компрессора	030	[мин]	
COn ([an)	Время работы компрессора без датчика при аварии	0120	[мин]	

Продолжение прил. В

1	2	3	4
COF (<i>EoF</i>)	Время останова компрессора без датчика при аварии	0120	[мин]
FnC (Fn[)	Режим работы вентилятора	0 1	Вместе с компрессором Непрерывно
FSt (<i>F5</i> Ł)	Температура остановки вентиляторов	-50+50	[град.]
Ot (at)	Калибровка датчика камеры	-12+12	[град.]
ΟΕ (<i>□E</i>)	Калибровка датчика воздухоохладителя	-12+12	[град.]
Параме	етры режима тревоги		
ALC (RLE)	Способ отсчета порогов LAL и НАL для включения режима тревоги	0 1	Пороги отсчитываются от SP Пороги — абсолютные значения параметров LAL и HAL
LAL (<i>LR</i> L)	Тревога при переохлаждении	-50+50	[град.]
HAL (<i>HR</i> L)	Тревога при перегреве	-50+50	[град.]

Продолжение прил. В

1	2	3	4	
ALd (RLd)	Время задержки тревоги	0120	[мин]	
dAO (<i>dR</i> a)	Время задержки тревоги при запуске	012	[4]	
Параме	етры режима набора холода			
CCt ([[]E)	Время набора холода	124	[4]	
dAF (<i>₫RF</i>)	Время задержки оттайки после набора холода	0120	[мин]	
Параметры оттайки				
dPO	Время до начала первой	0	30 c	
(dPo)	оттайки после запуска	1	Значение dit	
		2	Значение dit с отработкой CdP	
ddL	Параметр, выводимый на	0	Реальная температура	
(dďL)	индикатор во время оттайки	1	Температура в начале оттайки	
		2	Значение SP	
		3	Заставка dEF	
tdF	Способ (тип) оттайки	0	ТЭН	
(EdF)		1	Горячий газ	

Продолжение прил. В

1	2	3	4
EdF (<i>EdF</i>)	Тип окончания оттайки	0 1 2	По времени dEt По достижении температуры dSt По выполнении условий 1 или 2
dEt (<i>dEt</i>)	Максимальное время оттайки	1120	[мин]
dSt (<i>d5</i> £)	Температура окончания оттайки	-50+50	[град.]
dt (<i>d</i> ೬)	Время слива конденсата	0120	[мин]
Fnd (<i>Fnd</i>)	Задержка включения вентилятора после оттайки	0120	[мин]

Приложение Г

ДИАГНОСТИЧЕСКИЕ СООБЩЕНИЯ

"Er1" - выводится в случае отказа датчика термостата

"Er2" - выводится в случае отказа датчика воздухоохладителя

"ErL" - выводится в случае переохлаждения продукта в камере

"ErH" - выводится в случае перегрева продукта в камере

"ErC" - выводится в случае отказа (ошибок) энергонезависимой памяти прибора. При появлении данного сообщения следует перейти в режим изменения всех параметров, проверить и откорректировать их в случае необходимости. Либо загрузить значения, указанные в табл. 1, используя режим загрузки табличных значений.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ измене-	Номера листов (стр.)			Всего листов	Дата	Подпись	
ния	измен.	заменен.	новых	аннулир.	(стр.)	внесения	

СВИДЕТЕЛЬСТВО О ПРИЕМКЕ И ПРОДАЖЕ

Прибор ТРМ974, заводской номер

соответствует паспортным данным и	признан годным к эксплуатации.
Датавыпуска	_
ШтампОТК	Дата продажи