ДТС-RS и ДТП-RS

Датчики температуры с цифровым выходом

EAC

Руководство по эксплуатации

Содержание

Предупреждающие сообщения	2
Используемые аббревиатуры	3
Введение	4
1 Назначение и область применения	6
2 Технические характеристики и условия эксплуатации	6
2.1 Технические характеристики	6
2.2 Метрологические характеристики	7
2.3 Условия эксплуатации	
3 Устройство и работа	
4 Меры безопасности	
5 Использование по назначению	9
5.1 Эксплуатационные ограничения	9
5.2 Подготовка к использованию	9
5.3 Монтаж	_
5.4 Подключение	11
6 Работа датчика в сети RS-485	
7 Возможные неисправности и методы их устранения	
8 Техническое обслуживание	
9 Утилизация	
10 Маркировка	17
11 Упаковка и консервация	17
12 Транспортирование и хранение	17
13 Комплектность	17
14 Гарантийные обязательства	18
Приложение А. Конструктивные исполнения ДТП-RS	19
Приложение Б. Конструктивные исполнения ДТС-RS	23
Приложение В. Конструктивные исполнения коммутационных головок	

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ используется для предупреждения о непосредственной угрозе здоровью. Возможные последствия могут включать в себя смерть, постоянную или длительную нетрудоспособность.

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ используется, чтобы предупредить о повреждении имущества и устройств. Возможные последствия могут включать в себя повреждения имущества, например, прибора или подключенных к нему устройств.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ используется, чтобы предупредить о потенциально опасной ситуации. Возможные последствия могут включать в себя незначительные травмы.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ используется для дополнения, уточнения, толкования основного текста раздела/подраздела и/или пояснения специфических аспектов работы с прибором.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное объединение ОВЕН» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативнотехнической документации.

Используемые аббревиатуры

ИП – источник питания.

КТМС – кабель термопарный с минеральной изоляцией в стальной оболочке.

НП – нормирующий преобразователь.

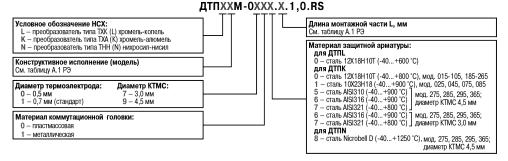
НСХ – номинальная статическая характеристика.

ТП – преобразователь термоэлектрический (термопара).

ТС – термопреобразователь сопротивления.

ЧЭ – чувствительный элемент.

Введение


Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, конструкцией, принципом действия, эксплуатацией и техническим обслуживанием датчиков температуры с цифровым выходом ДТХ-RS: ДТС-RS и ДТП-RS (далее по тексту – датчик).

Датчики температуры с цифровым выходом ДТХ-RS выпускаются в соответствии с ТУ 26.51.51-001-46526536-2019.

Датчик изготавливается в различных исполнениях, отличающихся друг от друга конструктивным исполнением, типом сенсора, диапазоном преобразования.

Информация об исполнении датчиков заложена в структурах их условного обозначения, приведенных ниже.

Обозначение датчиков с ЧЭ типа «термопара»:

Обозначение датчиков с ЧЭ типа «термопреобразователь сопротивления»:

Обозначение датчиков с ЧЭ типа «термопреобразователь сопротивления» для измерения температуры воздуха:

Пример обозначения при заказе: **ДТПК065М-0110.120.1,0.RS**.

Это означает, что изготовлению и поставке подлежит преобразователь термоэлектрический с выходным сигналом RS-485, с одним чувствительным элементом – термопара «хромель-алюмель», материал защитной арматуры – сталь 12X18H10T с диапазоном измерения температуры от минус 40 до +800 °C, с изолированным рабочим спаем, диаметром термоэлектрода 0,7 мм, в корпусе 065 с металлической коммутационной головкой, с длиной монтажной части 120 мм, с погрешностью $\pm 1,0$ % от диапазона измерений.

Пример обозначения при заказе: **ДТС035M-РТ100.0,5.200.RS.**

Это означает, что изготовлению и поставке подлежит термопреобразователь сопротивления с выходным сигналом RS-485, с одним чувствительным элементом — PT100, с погрешностью ±0,5 % от диапазона измерений от минус 50 до +500 °C, в корпусе 035, с длиной монтажной части 200 мм, с пластиковой коммутационной головкой.

Подробную информацию о возможных исполнениях датчиков можно получить на официальном сайте компании: www.owen.ru.

1 Назначение и область применения

Датчик предназначен для непрерывного измерения температуры жидких, паро- и газообразных сред, сыпучих материалов и твердых тел в различных отраслях промышленности, преобразования измеренного значения в цифровой код и передачи его по сети RS-485 (протокол Modbus).

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Технические характеристики датчиков приведены в таблице 2.1.

Таблица 2.1- Технические характеристики

Наименование	Значение			
Характеристики питания				
Номинальное значение напряжения питания (постоянного тока)*	24 B*			
Диапазон допустимых напряжений питания (постоянного тока)	1042 B			
Защита от смены полярности напряжения питания	есть			
Гальваническое разделение цепи питания от цепи ЧЭ	нет			
Гальваническое разделение цепи питания от цепи интерфейса RS-485	есть, до 500 В			
Время установления рабочего режима (предварительный прогрев) после включения напряжения питания, не более	10 мин			
Интерфейс связи RS-485				
Скорости обмена	9600, 14400, 19200, 38400, 57600, 115200 бит/с			
Протокол связи	Modbus RTU			
Режим работы в сети	Slave			
	96 кОм (1/8 от			
Входное сопротивление	стандартной			
	нагрузки)			
Характеристики конструкции				
Показатель тепловой инерции, не более	2040 c			
TT-RS	1090 c			
ДТП-RS				
Номинальное давление защитной арматуры в зависимости от исполнения арматуры и диаметра погружной части, не более:				
• арматура без штуцера	0,10 МПа			
• арматура со штуцером, менее 6 мм;	0,40 МПа			
• арматура со штуцером, 6 мм и менее 8 мм;	0,63 МПа			
 арматура со штуцером, 8 мм и менее 20 мм; 	10,00 M∏a			
• арматура со штуцером, 20 мм	16,00 M∏a			
Рабочие условия эксплуатации узлов коммутации	–40+85 °C			
Степень защиты (по ГОСТ 14254):				
– корпус с пластмассовой коммутационной головкой;	IP54			
– корпус с металлической коммутационной головкой и ДТС125М	IP65			

Наименование	Значение
Кабельный ввод (максимальный диаметр подключаемого	
кабеля):	
 для пластмассовой коммутационной головки; 	M16*1,5 (ø10 мм);
 для пластмассовой коммутационной головки ДТС125M.RS; 	M16*1,5 (ø6 мм);
 для металлической коммутационной головки 	M20*1,5 (ø10 мм)
Характеристики надежности	
Средняя наработка на отказ, не менее	50 000 ч
Средний срок службы, не менее	12 лет
Время непрерывной работы	круглосуточно

	Λ

ВНИМАНИЕ

Не допускается подключать прибор к распределительным сетям питания постоянного тока.

Рекомендуется использовать локальный источник питания.

2.2 Метрологические характеристики

Пределы допускаемой основной приведенной погрешности датчиков ДТП-RS (в зависимости от HCX и класса допуска) и ДТС-RS (в зависимости от HCX) приведены в таблицах 2.2 и 2.3 соответственно.

Пределы допускаемой дополнительной приведенной погрешности датчика, вызванной изменением температуры окружающего воздуха на каждые 10 °C от нормальной (20±10) °C в пределах рабочего диапазона, не превышают 0,2 предела допускаемой основной погрешности.

Таблица 2.2 – Метрологические характеристики датчиков ДТП-RS

Датчик	Максимальный диапазон измерений, °С*	Пределы допускаемой основной приведенной погрешности, %
ДТПL	От –40 до +600	
ДТПК От –40 до +900		± 1,0
ДТПИ	От –40 до +1250	
* В зависимости о	г исполнения.	

Таблица 2.3 – Метрологические характеристики датчиков ДТС-RS

Датчик	Максимальный диапазон измерений, °С	Пределы допускаемой основной приведенной погрешности, %
ДТС-50М, ДТС-100М	<i>–</i> 50+180	±0,5; ± 1,0
ДТС-РТ100, ДТС-100П	– 50 + 300	± 0,25
дто-г 1100, дто-10011	– 50 + 500	± 0,5
ДТС125М	-40+85	± 1,0

2.3 Условия эксплуатации

Рабочие условия эксплуатации узлов коммутации:

- помещения с нерегулируемыми климатическими условиями и/или навесы;
- атмосферное давление от 84 до 106,7 кПа;
- температура окружающей среды от минус 40 до +85 °C;
- относительная влажность не более 95 % при +35 °C и более низких температурах без конденсации влаги.

По устойчивости к механическим воздействиям при эксплуатации по ГОСТ Р 52931 датчики без монтажных элементов (в гладкой защитной арматуре) соответствуют группе V2, с монтажными элементами - группе N2.

3 Устройство и работа

Датчик состоит из (см. рисунок 3.1):

- ЧЭ, помещенного в защитную арматуру;
- Встроенного в коммутационную головку НП, предназначенного для преобразования измеренной температуры в цифровой сигнал RS-485.
- Коммутационная головка состоит из корпуса, крышки и кабельного ввода.

Подключение внешних линий связи осуществляется к винтовым клеммам НП внутри корпуса датчика (см. подраздел 5.4 Подключение).

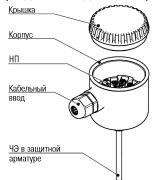


Рисунок 3.1 – Устройство датчика

Коммутационная головка может быть пластмассовой или металлической (см. Приложение B).

ЧЭ в зависимости от диапазона измеряемых температур может быть выполнен в виде ТС или ТП.

4 Меры безопасности

ВНИМАНИЕ

Любые подключения к датчику и работы по его техническому обслуживанию следует производить только при отключенном от электропитания оборудовании и отсутствии давления измеряемой среды.

По способу защиты от поражения электрическим током датчик соответствует классу III по ГОСТ 12.2.007.0.

При подключении, эксплуатации и техническом обслуживании датчика следует соблюдать требования ГОСТ 12.3.019, Правил эксплуатации электроустановок потребителей и Правил охраны труда при эксплуатации электроустановок потребителей.

Не допускается попадание влаги на контакты разъемов и внутрь датчика.

5 Использование по назначению

5.1 Эксплуатационные ограничения

Монтаж и эксплуатацию датчика следует выполнять с соблюдением мер безопасности, приведенных в разделе 4.

Климатические факторы, температура, физические свойства и химическая активность измеряемой среды, давление должны соответствовать техническим характеристикам датчика и стойкости материалов защитной арматуры к воздействию измеряемой среды.

ВНИМАНИЕ

Запрещается подвергать датчик резкому нагреву или охлаждению, а также механическим ударам.

5.2 Подготовка к использованию

Распаковав датчик и проверив комплектность, следует подготовить его к работе в такой последовательности (см. рисунок 5.1):

- 1. Снять крышку с коммутационной головки.
- 2. Выдержать датчик при температуре (20 ± 10) °C и относительной влажности 30-80 % в течение 1-2 ч. Проверить отсутствие механических повреждений датчика и целостность измерительной цепи. При наличии повреждений или отсутствии целостности цепи датчик заменить новым.
- 3. Ослабить гайку кабельного ввода, ввести кабель внутрь корпуса через кабельный ввод.
 - 4. Подсоединить провода к винтовым клеммам (см. подраздел 5.4 Подключение).
- 5. Туго затянуть гайку кабельного ввода. Уплотнительное кольцо должно полностью облегать кабель.
 - 6. Установить крышку на коммутационную головку, завинтить.

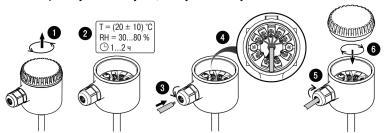


Рисунок 5.1 – Подготовка датчика

5.3 Монтаж

Габаритные и присоединительные размеры датчиков приведены в Приложениях A – B.

При монтаже датчика необходимо обеспечить контакт 2/3 длины погружаемой части с измеряемой средой. При этом погружаемая часть датчика должна располагаться перпендикулярно или под острым углом в направлении движения потока измеряемой среды.

Общие рекомендации по монтажу датчика приведены на рисунках 5.2 и 5.3.

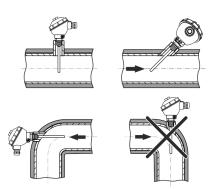


Рисунок 5.2 - Монтаж датчика на объекте

Рисунок 5.3 - Положения датчика при монтаже

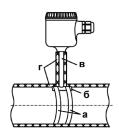


Рисунок 5.4 – Монтаж датчика ДТС325M-RS:

- а) хомут; б) пластина-теплообменник; в) арматура датчика;
 - г) теплоизоляционный материал для трубопровода

ВНИМАНИЕ

При монтаже датчика ДТС325M-RS необходимо:

- 1. плотно прижать пластину (б) к трубопроводу с помощью хомута (а);
- 2. применить теплопроводную пасту для обеспечения эффективного теплового контакта пластины (б) и трубопровода;
- 3. укрыть арматуру датчика по всей длине теплоизоляционным материалом для трубопровода.

5.4 Подключение

Для снижения влияния электромагнитных помех на линию связи рекомендуется выполнять ее витой парой, экранированным кабелем, экранированной витой парой. Линия связи может быть выполнена любым типом кабеля с медными проводами. Длина линии связи не должна превышать 1200 м.

Чтобы подготовить кабель к монтажу, следует (см. рисунок 5.5):

- 1. Разделать кабель, сняв внешнюю изоляцию на длине 35 мм.
- 2. Зачистить концы проводов на длине 5 мм.
- 3. Зачищенные концы проводов скрутить и либо залудить, либо обжать в кабельный наконечник.

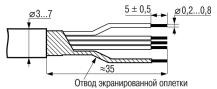


Рисунок 5.5 – Подготовка кабеля

ПРИМЕЧАНИЕ

Кабель не входит в комплект поставки.

Подключение датчика следует выполнять к винтовым клеммам встроенного НП согласно схеме подключения, приведенной на рисунке 5.6.

Также экран может использоваться исключительно как защитный; в этом случае экран должен подключаться к заземлению, как показано на рисунке 5.7.

ОПАСНОСТЬ

При подключении источника питания требуется соблюдать полярность! Несоблюдение полярности или подключение напряжения источника питания к контактам 3, 4, 5 приводит к выходу из строя датчика.

Не допускается подключать прибор к распределительным сетям питания постоянного тока. Рекомендуется использовать локальный источник питания.

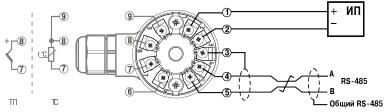


Рисунок 5.6 – Схема с подключением экрана по схеме выравнивания потенциала

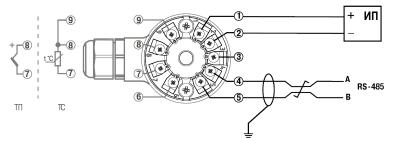


Рисунок 5.7 – Схема подключения экрана к заземлению

Провода следует монтировать между пластинами клемм (см. рисунок 5.8).

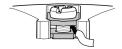


Рисунок 5.8 - Монтаж провода

Контакт 3 предназначен для выравнивания потенциалов между различными абонентами сети и может быть осуществлен двумя способами:

- посредством экрана витой пары (как показано на рисунке 5.6) при условии, что ни на одном из абонентов сети экран не будет подключен на защитное заземление:
- отдельным проводником без использования экрана кабельного соединения.

6 Работа датчика в сети RS-485

Датчик может работать только в режиме Slave по протоколу обмена данными ModBus RTU.

В датчике реализовано выполнение следующих функций ModBus:

- 03 (0x03): чтение из нескольких регистров хранения;
- 06 (0x06): запись значения в один регистр хранения;
- 16 (0x10): запись значений в несколько регистров хранения.

Первое подключение к датчику следует выполнить с учетом заводских сетевых настроек:

- скорость обмена: 9600 бит/с;
- длина слова данных: 8 бит;
- контроль четности: отсутствует;
- количество стоп-бит: **1 бит**;
- сетевой адрес датчика: 16.

ПРИМЕЧАНИЕ

У каждого датчика в коммуникационной сети должны быть:

- уникальный адрес, отличный от адресов прочих устройств сети;
- одинаковая скорость передачи данных.

Датчик следует настраивать с помощью Универсального конфигуратора OBEH (ссылка на скачивание – https://owen.ru/soft/owen_configurator).

Список параметров, доступных по сети RS-485, приведен в таблице 6.1.

Таблица 6.1 – Параметры датчика, доступные по RS-485

Наименование параметра	пері	мер вого стра	Коли- чест- во регис-	Тип	Допустимые значения ¹⁾	Тип досту па ²⁾
	DEC					
		Общие	параме	тры		
Название прибора	1000	3E8	3	STRING (6)	NPC-1	RO
Версия программного обеспечения	1006	3EE	3	STRING (3)	1.0099.99	RO
Состояние датчика	1300	514	1	WORD	см. таблицу 6.2	RO
	Уп	равлени	е парам	етрами		l.
Восстановить заводские сетевые настройки	1400	578	1	BYTE	0/1	RW
Записать параметры во flash	1402	57A	1	BYTE	0/1	RW
Перезагрузить датчик	1403	57B	1	BYTE	0/1	WO
	Or	ератив	ные пар	аметры		l .
Значение температуры, °С	2200	898	2	REAL	-213+1310	RO
	П	араметр	ы измер	рителя		
Верхний предел измерения, °С	5302	14B6	2	REAL	зависит от типа сенсора	RO
Нижний предел измерения, °С	5304	14B8	2	REAL	зависит от типа сенсора	RO
Верхний предел регистрации, °С ³⁾	5306	14BA	2	REAL	-213+1310	RW
Нижний предел регистрации, °C ³⁾	5308	14BC	2	REAL	-213+1310	RW
Постоянная фильтра, сек ⁴⁾	5310	14BE	1	вүте	0 – фильтр отключен; 110	RW

Наименование параметра	Номер первого регистра		пері	Коли- чест- во регис-	Тип	Допустимые значения ¹⁾	Тип досту па ²⁾
	DEC	HEX	тров			ııa '	
Тип сенсора ⁵⁾	5313	14C1	1	ВҮТЕ	0 – 50M; 1 – 100M; 2 – 100П; 3 – Pt 100; 4 – Pt 1000; 5 – TXK (L); 6 – THH (N); 7 – TXA (K)	RW	
		Сетевые	параме	тры ⁵⁾			
Тип протокола обмена	5601	15E1	1	BYTE	1 – Modbus RTU	RO	
Адрес устройства	5602	15E2	1	BYTE	1 16 247	RW	
Скорость обмена, бит/сек	5603	15E3	1	ВҮТЕ	0 – 9600; 1 – 14400; 2 – 19200; 3 – 38400; 4 – 57600; 5 – 115200	RW	
Количество бит данных	5604	15E4	1	BYTE	8	RO	
Контроль четности	5605	15E5	1	BYTE	0 – нет, 1 – четный, 2 – нечетный	RW	
Количество стоп- битов	5606	15E6	1	BYTE	0 – 1; 1 – 1,5; 2 – 2	RW	
Применить новые сетевые параметры	5611	15EB	0	BYTE	0/1	WO	

¹⁾ Значения по умолчанию выделены полужирным курсивом.

²⁾ Обозначение типа доступа: RO – только чтение, RW – чтение/запись, WO – только запись.

³⁾ Параметры задаются только в пределах измерения датчика и предназначены для сигнализации выхода температуры за верхнюю или нижнюю границы (при необходимости). Сигнал формируется в параметре «Состояние датчика» при выходе температуры за границы установленного диапазона.

⁴⁾ По умолчанию экспоненциальный фильтр отключен (постоянная времени равна 0). При значительных колебания температуры может возникнуть необходимость

Наименование параметра	Номер первого регистра		Коли- чест- во регис-	Тип	Допустимые значения ¹⁾	Тип досту па ²⁾
	DEC	HEX	тров			III T

сглаживания измерений. Для этого параметр постоянной времени нужно увеличить, наблюдая при этом за степенью уменьшения колебаний измеренного значения. 5) Устанавливается на заводе-изготовителе.

Таблица 6.2 – Битовая маска параметра «Состояние датчика» (регистр 1300)

Номер бита	Ошибка / критический отказ	Возможные причины	Способ устранения
0	Ошибка АЦП	Внутренняя ошибка прибора	Связаться со службой технической поддержки
1	Ошибка датчика холодного спая	Внутренняя ошибка прибора либо выход температуры окружающего воздуха за допустимые пределы	Обеспечить условия эксплуатации датчика при температурах окружающего воздуха -40+85 °С. Если температура соответствует РЭ, связаться со службой технической поддержки
2	Обрыв ТП	Детектирован обрыв входных цепей сенсора ТП	Провести
3	Выход за диапазон измерения сопротивления	Сопротивление ТС выходит за диапазон измерения	Убедиться, что значение в параметре «Тип сенсора» соответствует заявленному в маркировке датчика.
4	Выход за диапазон измерения напряжения	Напряжение ТП выходит за диапазон измерения	Связаться со службой технической поддержки.
5	Выход за диапазон измерения температуры	Температура выходит за диапазон измерения	Связаться со службой технической поддержки.
6	Выход за диапазон регистрации температуры	Пользователь установил слишком узкие границы регистрации Нормальная реакция датчика на повышение измеряемой температуры (выход за уставку)	Установить границы регистрации в соответствии с системными потребностями Нормальное функционирование датчика
7	Ошибка встроенного ПО	Внутренняя ошибка прибора	Связаться со службой технической поддержки

Для **восстановления сетевых настроек** в значение по умолчанию следует выполнить такие действия:

- отключить питание датчика;
- отключить датчик от сети RS-485;
- соединить линию A с контактом «Общий RS-485» (установить перемычку между клеммами 3 и 4);
- включить питание датчика;
- выдержать не менее 5 с и отключить питание датчика.

7 Возможные неисправности и методы их устранения

Ошибка / критический	Возможные причины /	Метод устранения /
отказ	ошибки пользователя	действия пользователя
Нет связи с датчиком	Короткое замыкание в цепи	Проверьте корректность
	питания на клеммах датчика	подключения
	Неправильное подключение	Проверьте схему
	интерфейса связи RS-485	подключения
Нет связи с датчиком.	Не соблюдена полярность	Проверить схему
Преобразователь	при подключении источника	подключения.
датчика вышел из	питания	При неправильном
строя		подключении датчик
		вывести из эксплуатации
	Датчик подключен к	Проверить правильность
	распределительным сетям	подключения датчика.
	питания постоянного тока	При неправильном
		подключении датчик
		вывести из эксплуатации

8 Техническое обслуживание

При выполнении работ по техническому обслуживанию датчика следует соблюдать меры безопасности, изложенные в разделе 4.

Техническое обслуживание датчика проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включает следующие процедуры:

- внешний осмотр и очистка датчика;
- проверка качества крепления датчика и подключения внешних связей;
- проверка сопротивления изоляции.

Обнаруженные при осмотре недостатки следует немедленно устранить.

Эксплуатация датчика с повреждениями и неисправностями ЗАПРЕЩАЕТСЯ.

9 Утилизация

Датчик после вывода из эксплуатации передается в специализированную организацию по утилизации.

Утилизация осуществляется в соответствии с действующими на момент утилизации нормами и правилами.

Сведения о содержании драгоценных материалов указаны в паспорте на изделие.

10 Маркировка

На датчике или прикрепленному к нему ярлыке указываются:

- модель и исполнение датчика;
- условное обозначение HCX;
- класс точности (погрешность);
- диапазон измерений температуры;
- заводской номер;
- дата выпуска;
- товарный знак предприятия-изготовителя;
- страна-изготовитель.

11 Упаковка и консервация

Порядок подготовки датчика к упаковке, способ упаковки, консервация, тара и материалы, применяемые для упаковки, в зависимости от условий поставки и хранения, должны соответствовать документации предприятия-изготовителя.

Упаковку следует производить в закрытых помещениях при температуре от +15 до +40 ° С и относительной влажности не более 80 %. Воздух помещений не должен содержать пыли, а также агрессивных газов и паров, вызывающих коррозию.

Типы и размеры упаковочной тары должны соответствовать ГОСТ 2991 или ГОСТ 5959. Допускается применение подборной тары.

Масса транспортной тары с датчиком (брутто) должна быть не более 80 кг.

12 Транспортирование и хранение

Датчик должен транспортироваться в закрытом транспорте любого вида в соответствии с правилами перевозки грузов на транспорте данного вида.

Условия транспортирования и хранения датчика в упаковке предприятияизготовителя должны соответствовать условиям 6 по ГОСТ 15150.

Способ укладки датчика в упаковке на транспортное средство должен исключать его перемещение.

Допускается транспортировать датчик в контейнере, обеспечивающем его неподвижность, без упаковки по ГОСТ 21929.

Датчик следует хранить в сухих закрытых помещениях согласно условиям хранения 3 по ГОСТ 15150.

В воздухе не должна присутствовать пыль, а также агрессивные пары и газы, вызывающие коррозию.

13 Комплектность

Датчик	1 шт.
Паспорт и гарантийный талон	1 экз.
Руководство по эксплуатации	1 экз.

ПРИМЕЧАНИЕ

Изготовитель оставляет за собой право внесения дополнений в комплектность датчика. Полная комплектность указывается в паспорте на датчик.

14 Гарантийные обязательства

Изготовитель гарантирует соответствие датчика требованиям технических условий при соблюдении потребителем условий транспортирования, хранения, монтажа и эксплуатации.

Гарантийный срок эксплуатации – 24 месяца со дня продажи.

Гарантийный срок хранения — три года со дня выпуска предприятиемизготовителем.

Приложение А. Конструктивные исполнения ДТП-RS

ПРИМЕЧАНИЕ

Модели ДТП-RS могут выпускаться как с пластмассовой, так и с металлической коммутационной головкой.

Таблица A.1 – Конструктивные исполнения ДТП-RS

Модель	Внешний вид	Параметры	(диапазон температур) час	
015		D = 8 мм	ДТПL сталь 12X18H10T (-40+600 °C) ДТПК сталь 12X18H10T (-40+800 °C)	
025		D = 10 мм	ДТПL сталь 12X18H10T (-40+600 °C) ДТПК сталь 12X18H10T (-40+800 °C) сталь 10X23H18 (-40+900 °C)	
035	S S	D = 8 MM, M = 20×1,5 MM**, S = 22 MM	ДТПL сталь 12X18H10T (-40+600 °C) ДТПК сталь 12X18H10T (-40+800 °C)	60, 80, 100, 120, 160, 200, 250,
045		D = 10 mm, M = 20×1,5 mm**, S = 22 mm	ДТПL сталь 12X18H10T (-40+600 °C) ДТПК сталь 12X18H10T (-40+800 °C) сталь 10X23H18 (-40+900 °C)	320, 400, 500, 630, 800, 1000, 1250, 1600, 2000
055	S 120	D = 10 mm, M = 20×1,5 mm**, S = 22 mm	ДТПL сталь 12X18H10T (-40+600 °C) ДТПК сталь 12X18H10T (-40+800 °C)	

Модель	Внешний вид	Параметры	· (диапазон температур) ч	
065		D = 8 MM, M = 20×1,5 MM**, S = 27 MM	ДТПL сталь 12X18H10T (-40+600 °C) ДТПК сталь 12X18H10T (-40+800 °C)	
075		D = 10 MM, M = 20×1,5 MM**, S = 27 MM	ДТПL сталь 12X18H10T (-40+600 °C) ДТПК	
085		D = 10 mm, M = 27×2 mm**, S = 32 mm	сталь 12X18H10T (-40+800 °C) сталь 10X23H18 (-40+900 °C)	
095	S 120	D = 10 mm, M = 20×1,5 mm**, S = 22 mm	ДТПL сталь 12X18H10T (-40+600 °C) ДТПК сталь 12X18H10T (-40+800 °C)	60, 80, 100, 120, 160, 200, 250, 320, 400, 500,
105		D = 10 mm, M = 20×1,5 mm**, S = 27 mm	ДТПL сталь 12X18H10T (-40+600°C)	520, 400, 500, 630, 800, 1000, 1250, 1600, 2000
185	S S	D = 10 mm, M = 22×1,5 mm**, S = 27 mm	ДТПК сталь 12X18H10T (-40+800 °C) сталь 10X23H18 (-40+900 °C)	
195	24 80	D = 10 mm, M = 27×2 mm**, S = 27 mm		

Модель	Внешний вид	Параметры	· · (диапазон температур) части L^,		
205	OR S S	D = 10 mm, M = 22×1,5 mm**, S = 27 mm, R = 9,5 mm	ДТПL сталь 12X18H10T (-40+600 °C)		
215	24 80	D = 10 MM, M = 27×2 MM**, S = 32 MM, R = 12 MM	ДТПК сталь 12X18H10T (-40+800 °C) сталь 10X23H18 (-40+900 °C)	60, 80, 100, 120, 160, 200, 250, 320, 400, 500	
265	SZ 20	D = 6 MM, M = 22×1,5 MM**, S = 27 MM	ДТПL сталь 12X18H10T (-40+600 °C) ДТПК сталь 12X18H10T (-40+800 °C)	320, 400, 500, 630, 800, 1000, 1250, 1600, 2000	
275	KTMC	D = 3 mm D = 4,5 mm	ДТПL сталь 12X18H10T (—40+600 °C), диаметр КТМС 3,0 мм ДТПК сталь AISI 321 (—40+800 °C), диаметр КТМС 3,0 мм диаметр КТМС 4,5 мм сталь AISI 310 (—40+900 °C), диаметр КТМС 4,5 мм	10020000	
285	KTMC S S S S S S S S S S S S S S S S S S S	D = 3 MM D = 4,5 MM, M = 20×1,5 MM**, S = 22 MM	сталь AISI 316 (-40+900 °C), диаметр КТМС 4,5 мм диаметр КТМС 3,0 мм ДТПN сплав Nicrobell D (-40+1250 °C), диаметр КТМС 4,5 мм ДТПЈ сталь AISI 316 (-40+600 °C), диаметр КТМС 3,0 мм диаметр КТМС 4,5 мм	кратно 10	

Модель	Внешний вид	ий вид Параметры Материал защитной арматуры (диапазон температур)		
295	KTMC S S S S S S S S S S S S S S S S S S S	D = 3 мм D = 4,5 мм, S = 22 мм D = 4,5 мм, S = 22 мм D = 4,5 мм, M = 20×1,5** мм, S = 22 мм D = 4,5 мм, M = 20×1,5** мм, S = 22 мм D = 4,5 мм, Сталь AISI 321 (-40+800 °C), диаметр КТМС 3,0 мм диаметр КТМС 4,5 мм Сталь AISI 310 (-40+900 °C), диаметр КТМС 4,5 мм		400 20000
365	KTMC S S S S S S S S S S S S S S S S S S S	D = 3 MM D = 4,5 MM, M = 20×1,5** MM, S = 22 MM	сталь AISI 316 (–40+900 °C), диаметр КТМС 4,5 мм диаметр КТМС 3,0 мм ДТПN сплав Nicrobell D (–40+1250 °C), диаметр КТМС 4,5 мм ДТПJ сталь AISI 316 (–40+600 °C), диаметр КТМС 3,0 мм диаметр КТМС 3,0 мм	10020000 кратно 10

^{*} Длина монтажной части L выбирается при заказе.
** По спецзаказу возможно изготовление датчика с трубной резьбой.

Приложение Б. Конструктивные исполнения ДТС-RS

ПРИМЕЧАНИЕ

Модели ДТС-RS могут выпускаться как с пластмассовой, так и с металлической коммутационной головкой.

Таблица Б.1 – Конструктивные исполнения ДТС-RS

Модель	Внешний вид	Параметры	Материал защитной арматуры	Длина монтажной части L*, мм
015		D = 8 мм		
025		D = 10 мм		80, 100, 120, 160, 200, 250, 320, 400, 500, 630, 800, 1000, 1250, 1600, 2000
035	S S	D = 8 мм, M = 20×1,5 мм**, S = 22 мм		
045		D = 10 mm, M = 20×1,5 mm**, S = 22 mm	сталь 12X18H10T	
145		D = 6 mm, M = 20×1,5 mm**, S = 22 mm		60, 80, 100, 120,160, 200, 250, 320, 400,
335		D = 8 MM M = 20×1,5** MM, S = 22 MM		500, 630, 800, 1000, 1250, 1600, 2000

Модель	Внешний вид	Параметры	Материал защитной арматуры	Длина монтажной части L*, мм
055	S S 120	D = 10 MM, M = 20×1,5 MM**, S = 22 MM		80, 100, 120, 160, 200, 250, 320, 400, 500, 630, 800, 1000, 1250, 1600, 2000
065	S OF S	D = 8 MM, M = 20×1,5 MM**, S = 27 MM		
075		D = 10 mm, M = 20×1,5 mm**, S = 27 mm		
085		D = 10 mm, M = 27×2 mm**, S = 32 mm		
095	7 max 120	D = 10 mm, M = 20x1,5 mm**, S = 22 mm	сталь 12X18Н10Т	80, 100, 120, 160, 200, 250, 320, 400, 500, 630, 800, 1000, 1250, 1600, 2000
105		D = 8 MM, M = 20×1,5 MM**, S = 27 MM		

Модель	Внешний вид	Параметры	Материал защитной арматуры	Длина монтажної части L*, мм
325	Ø80100 PAR	Датчик накладной на трубопровод диаметром от 80 до 100 мм		50, 80, 100, 120
405	66 47 47 40 TB.	D = 5 mm	сталь 12X18Н10Т	80, 100, 120, 160, 200, 250, 320

Таблица Б.2 – Конструктивные исполнения ДТС-RS для измерения температуры воздуха

Модель	Внешний вид	Параметры	Материал защитной арматуры	Длина монтажної части L*, мм
125	91	D = 6 мм	сталь 12X18Н10Т	60, 80, 100

Приложение В. Конструктивные исполнения коммутационных головок

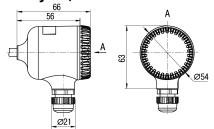


Рисунок В.1 – Габаритные размеры пластмассовой коммутационной головки

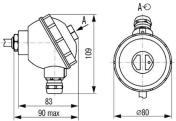


Рисунок В.2 – Габаритные размеры металлической коммутационной головки

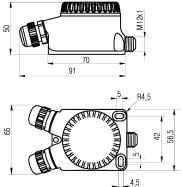


Рисунок В.3 – Габаритные размеры коммутационной головки для датчика ДТС125M-RS

i

ПРИМЕЧАНИЕ

В коммутационной головке для ДТС125M-RS резьба M12×1 предназначена для крепления защитного экрана.

i

ПРИМЕЧАНИЕ

Вид защитной арматуры ЧЭ зависит от конструктивного исполнения датчика.

111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5 тел.: +7 (495) 641-11-56, факс: +7 (495) 728-41-45 тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru отдел продаж: sales@owen.ru www.owen.ru

рег.: 3034